Dans cet article vous trouverez comment appliquer simultanément à un nuage de points LIDAR deux types d’ interpolation (TLI et IDW) après avoir segmenté le nuage en deux types de zones.
Tutoriel Traitement des données LIDAR HD avec QGis
1- Les données LIDAR dans QGis 3.32
2- Télécharger les données LIDAR HD de l’IGN et les charger dans QGis
3-Les outils pour les données LIDAR dans QGis 3.32
4-Coloriser un nuage de points à partir d’une orthophoto avec CloudCompare
5-Coloriser un nuage de points à partir d’une orthophoto avec LAStools
6- Créer un Modèle numérique de surface (MNS) avec CloudCompare ou LAStools
7- Créer un Modèle Numérique de Terrain avec CloudCompare
8- Créer un Modèle Numérique de Terrain avec LAStools
9- Créer un Modèle Numérique d’Entités avec Open Lidar
10-Rôle de l’Interpolation dans le Contexte du Modèle Numérique d’Élévation (MNE)
L’interpolation exerce une influence significative sur la précision et la qualité visuelle du Modèle Numérique d’Élévation (MNE) final. Ce processus implique l’ajustement d’une surface aux données ponctuelles d’élévation en les superposant avec une grille définie par une taille de cellule spécifique. Il est important de noter que les points obtenus suite à ce procédé sont déduits des données originales et ne correspondent pas directement aux points de données réels.
Interpolation spatiale : un défi majeur
Les interpolateurs disponibles
Malgré de multiples efforts sur le sujet, l’interpolation demeure un défi majeur. Les méthodes existantes pour générer des MNE à partir de données LiDAR aéroportées rencontrent des obstacles significatifs, particulièrement dans des contextes de projets où les zones présentent des caractéristiques non-terrestres denses ou des paysages complexes. La profusion d’analyses visant à évaluer la précision démontre la complexité du choix de la méthode d’interpolation adaptée, du fait que chaque méthode possède ses avantages et inconvénients spécifiques.
Dans la pratique, les méthodes fondées sur le krigeage sont réputées pour générer des MNE avec une plus grande précision, mais cela requiert davantage de ressources de calcul. Des approches telles que la pondération par la distance inverse (IDW), la méthode du plus proche voisin, et la triangulation avec interpolation linéaire (TLI) permettent d’obtenir des MNE plus précis. Notamment, la triangulation avec interpolation linéaire (TLI) et la méthode du plus proche voisin sont des méthodes simples et rapides pour créer des MNE relativement précis. Toutefois, leur performance diminue et leur sensibilité à la topographie s’accroît à mesure que la résolution spatiale du MNE augmente.
La méthode Spline semble offrir un compromis entre le temps de calcul et la précision à haute résolution. Bien qu’elle démontre une grande précision à haute résolution, sa fiabilité décroît à basse résolution.
Les problèmes inhérents à chaque interpolateur
Contrairement à la profusion de documents consacrés à l’interpolation des Modèles Numériques d’Élévation (MNE), l’interpolation des modèles numériques d’entités (DFM) spécifiques à l’archéologie n’a jusqu’à présent été que brièvement explorée dans un petit nombre d’études, aboutissant à des conclusions divergentes : le TLI, le Krigeage, l’interpolation spline ainsi que la méthode du plus proche voisin ont tous été désignés comme les interpolateurs les plus appropriés.
A ce jour, on considère que malgré la supériorité du Krigeage en termes de résultats, c’est actuellement l’Interpolation par la Distance Inverse Pondérée (IDW) qui est l’interpolateur spécifiquement adapté à l’archéologie, principalement en raison de sa facilité d’accès.
Cependant, cela ne signifie pas que l’Interpolation par la Distance Inverse Pondérée (IDW) soit exempte de défauts. Dans les zones où l’échantillonnage est nettement insuffisant (là où la densité des points de mesure est bien inférieure à celle des cellules de la grille), l’IDW engendre un modèle relativement dense d’artefacts d’interpolation négatifs, se traduisant par des erreurs sous forme de valeurs négatives exagérées. Dans les zones modérément sous-échantillonnées, les résultats seront visuellement plus satisfaisants, car aucun artefact positif ne sera présent. Cependant, de très petits artefacts négatifs ainsi qu’un léger effet d’échelle (se manifestant comme des artefacts en forme d’écailles de poisson) sur les pentes pourront être observés. Bien que cet effet ne soit pas particulièrement perturbant visuellement, il pourrait induire en erreur un observateur inexpérimenté (ou même un observateur expérimenté en l’absence de métadonnées adéquates), le conduisant à faussement conclure à une formation en terrasses.
Dans les zones légèrement sous-échantillonnées, l’IDW a tendance à présenter un bruit de données résultant de la configuration des points de mesure, ce qui pourrait être confondu avec des caractéristiques géologiques ou autres. Dans les régions où la densité des points de mesure équivaut ou dépasse celle des cellules de la grille, l’IDW conduit à un lissage excessif, ce qui ne représente pas la solution optimale pour une interpolation adaptée au contexte archéologique.
Le krigeage ordinaire se démarque en tant qu’interpolateur de qualité supérieure, cependant, il demeure peu accessible dans la plupart des logiciels pertinents. Si son accessibilité était améliorée, il pourrait rapidement devenir l’option privilégiée en matière d’interpolation spécifique à l’archéologie. Par ailleurs, l’opinion la plus répandue met en relief le potentiel d’un interpolateur hybride qui fusionnerait les caractéristiques de l’IDW et du TLI. Ces deux méthodes se distinguent par leur grande accessibilité et leur coût de mise en œuvre modéré. Tandis que le TLI s’affirme comme le meilleur choix pour les zones en situation de sur-échantillonnage, l’IDW excelle dans les zones présentant un sous-échantillonnage.
Mise en place d’un interpolateur hybride
Dans le passé, un élément clé manquait pour la réalisation d’un interpolateur hybride de ce type. Ce manque résidait dans l’absence d’une méthode de segmentation appropriée permettant de diviser les données en zones mieux adaptées à chaque interpolateur. Récemment, ce problème a été résolu grâce à l’utilisation de la classification et de l’analyse des arbres de régression pour générer une carte de prédiction d’incertitude du Modèle Numérique de Terrain (MNT). Cette méthode a été adaptée, dans le plugin Open Lidar Toolbox, pour créer une carte de confiance spécifique à l’archéologie pour le Modèle Numérique d’Entités (MNE), attribuant un niveau de confiance allant de un à six à chaque cellule de la grille. Cette approche permet ainsi de quantifier la qualité de la Modèle Numérique d’Entités au niveau du pixel.
La carte de confiance
Lors de l’évaluation des interpolateurs par rapport à la carte de confiance du MNE, il a été constaté que la méthode de Triangulation avec Interpolation Linéaire (TLI) était la plus performante pour les zones ayant des niveaux de confiance cinq et six, et donnait de bons résultats pour les niveaux trois et quatre. Après avoir résolu le problème de segmentation, il restait un défi à relever pour la mise en œuvre de l’interpolateur hybride. En effet, les interpolateurs TLI et IDW produisent, par définition, des modèles de grille légèrement différents.
Si ces deux modèles étaient simplement combinés à l’aide de la calculatrice raster, des artefacts sous forme de marches apparaîtraient dans les zones de transition entre les deux interpolateurs. Bien que ce phénomène soit intrinsèque à tout interpolateur hybride et ne puisse être totalement éliminé, il est possible de l’atténuer. Trois mesures d’atténuation distinctes ont été mises en place dans Open Lidar Toolbox.
Les solutions pour l’hybridation de deux interpolateurs
Premièrement, les zones de transition peuvent être réduites par une opération de défragmentation. En effet, dans certaines conditions de paysage et/ou de collecte de données les valeurs de la carte de confiance se présentent sous forme de fragments dispersés. Dans de telles circonstances, la zone de transition s’accroît de manière exponentielle, ce qui diminue les effets positifs de l’interpolation hybride. Ce problème peut être résolu en imposant une taille minimale pour chaque zone d’interpolation, qui serait bien supérieure à la taille d’une seule cellule.
La méthode statistique zonale avec un voisinage de 11 cellules a été sélectionnée comme la plus efficace. Ce choix a été motivé par le fait que ce voisinage garantit l’absence de zones plus petites que 6 cellules, assurant ainsi une cohérence dans les analyses.
Par ailleurs, il convient de noter que les différences entre les interpolateurs TLI et IDW ne sont pas uniformes. Leurs variations sont plus prononcées dans les zones de confiance trois et quatre, ce qui engendre des écarts relativement faibles entre les deux interpolateurs dans ces plages de confiance. En conséquence, les transitions entre les deux interpolateurs sont plus fluides et moins perceptibles lorsque les niveaux de confiance se situent entre trois et quatre.
En outre, des mesures ont été prises pour atténuer l’effet restant des transitions entre les interpolateurs. Une stratégie adoptée a été l’introduction d’une zone tampon dans les zones de contact, où l’élévation est calculée comme la moyenne pondérée entre les résultats des interpolateurs TLI et IDW. Diverses expérimentations ont été menées avec des tampons de une, trois et cinq cellules, comportant des moyennes pondérées. Dans la majorité des cas, les résultats étaient similaires, néanmoins, dans quelques cas extrêmes, l’utilisation de tampons plus larges a engendré des artefacts plus significatifs. En conséquence, la décision a été prise d’utiliser un tampon d’une seule cellule pour obtenir un compromis optimal.
Il est apparu que des artefacts en forme de « beignet » pouvaient se former lorsque des zones de niveau de confiance 1 de la carte DFM étaient directement adjacentes à des zones de niveau 4 ou supérieur. Pour résoudre ce problème, la zone de contact a été élargie, c’est-à-dire déplacée davantage dans les zones de niveau quatre: un déplacement de trois cellules s’est révélé être une solution adéquate pour cette situation.
Comment s’exécute l’interpolation hybride
Ainsi, toutes les conditions nécessaires pour exécuter l’interpolation hybride ont été satisfaites. Le processus se déroule comme suit :
- En premier lieu, l’ensemble du nuage de points est soumis à une interpolation à l’aide des deux méthodes d’interpolation.
- Ensuite, la zone est divisée en segments par le reclassement de la carte de confiance DFM en deux catégories distinctes : les segments « rouges » (correspondant aux niveaux un à trois pour IDW) et les segments « bleus » (correspondant aux niveaux quatre à six pour TLI).
- Par la suite, une étape de défragmentation est effectuée, suivie d’un déplacement de trois cellules.
- De plus, une zone tampon de contact d’une cellule de large est définie. À l’intérieur de cette zone tampon, la valeur d’élévation moyenne des résultats obtenus par les deux interpolateurs est utilisée.
- La phase finale de la procédure implique la fusion des segments « rouge » et « bleu », ainsi que de la zone tampon. Cette fusion est réalisée en utilisant des techniques d’algèbre cartographique.
Algorithme de création de la carte de confiance
Voici le modèle de traitement utilisé par Open Lidar Toolbox dans QGis pour créer la carte de confiance:
La carte de confiance est réalisée à partir de trois fichiers en entrée, deux nuages de points et un raster:
- le raster du modèle numérique calculé par la méthode de triangulation (TLI)
- la densité par mètre carré des points correspondants à la végétation basse
- la densité par mètre carré des points correspondants au sol
Selon les valeurs de densité et de la pente calculée à partir du modèle numérique on aura six classes:
- Classe 1: densité des points ‘sol’ : <1 , Pente: <22.5° , Densité de points végétation basse: non utilisé.
- Classe 2: densité des points ‘sol’ : 1-4 , Pente: 22.5°-42.5° , Densité de points végétation basse: non utilisé.
- Classe 3: densité des points ‘sol’ : 1-2 , Pente: <22.5° , Densité de points végétation basse: non utilisé.
- Classe 4: densité des points ‘sol’ : >2 , Pente: <22.5° , Densité de points végétation basse: non utilisé, ou densité des points ‘sol’ : >4 , Pente: >12.5° , Densité de points végétation basse: >4.
- Classe 5: densité des points ‘sol’ : >4 , Pente: <12.5° , Densité de points végétation basse: >4 ou densité des points ‘sol’ : >4 , Pente: >12.5° , Densité de points végétation basse: <4.
- Classe 6: densité des points ‘sol’ : >4 , Pente: <12.5° , Densité de points végétation basse: <4.
Pour les zones classées de 1 à 3 on utilisera l’interpolation IDW et pour les zones classées 4 à 6 l’interpolation TLI.
Interpolation hybride des modèles d’élévation
Pour la mise en pratique de l’interpolation hybride pour réaliser un Modèle Numérique d’Entités, comme nous l’avons vu dans le chapitre précédent, nous utilisons l’outil One Step Processing du plugin Open Lidar Toolbox.
Pour réaliser un Modèle Numérique de Terrain (MNT)
Pour utiliser l’outil d’interpolation hybride il nous faut:
- une carte de confiance
- un raster interpolé avec IDW
- un raster interpolé avec TIN
Les rasters créés par le plugin Open Lidar Toolbox utilisent la classe ‘sol’ et ‘bâtiments’ comme couche de terrain. On peut aller modifier les paramètres au niveau du code Python du plugin, mais c’est tout de même plus facile d’exécuter le plugin pour obtenir la carte de confiance, interpoler seulement la classe ‘sol’ et substituer avec ces nouveaux rasters les raster créés pa le plugin.
Pour pouvoir créer la carte de confiance nous avons besoin d’un nuage de points LIDAR classé. Il ne suffit pas d’avoir simplement les points classés du sol car nous avons besoin aussi de la végétation basse. Soit vous partez d’un nuage de points LIDAR IGN classé, soit d’un nuage de points non classé sur lequel vous appliquerez le traitement LASclassify de LASTools, Classify LAS/LAZ d’Open Lidar Toolbox ou tout autre procédé de classification selon vos besoins et le type de données que vous utilisez.
Dans l’exemple ci-après nous partons d’un nuage de points LIDAR HD classé de l’IGN.
Pour créer la carte de confiance on peut utiliser l’outil One Step Processing
On s’assure de bien cocher la case The input Las/Laz file is already classified et on décoche toutes les visualisations qui n’auront aucune utilité.
On obtient le résultat suivant:
Vous pouvez utiliser les outils d’interpolation IDW et TIN de votre choix, mais ici on gardera les mêmes outils que ceux utilisés par le plugin :
- WhiteboxTools->Lidar Tools -> LidarIDWInterpolation
- WhiteboxTools->Lidar Tools -> LidarTINGridding
Attention, ces outils ne fonctionnent pas avec des fichier .laz, vous devrez les convertir en .las préalablement (Traitements->Point Cloud Conversion -> Convert format).
Rentrez toutes les autres classes que la classe ‘sol’ (2) dans la liste d’exclusion et augmentez le Search Radius en fonction des ‘trous’ sans points de sol. Si le rayon de recherche est trop petit, vous aurez des trous dans votre raster IDW.
Maintenant que nous avons les deux rasters nécessaires, on peut exécuter l’outil Hybrid Interpolation:
On utilise la carte de confiance de One Step Processing, mais les deux rasters interpolés en utilisant exclusivement les points ‘sol’.
On charge le MNT résultant dans QGis et on peut, avec la Vue du profil d’élévation voir les trois modèles d’élévation, surtout dans les zones hybrides:
La ligne bleue correspond au MNT hybride. On voit bien que les résultats des interpolations IDW et TIN diffèrent là où les pentes de terrain sont plus prononcées.
A vous de voir, sur le terrain, quelle méthode est la plus appropriée en fonction de vos objectifs.